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I. INTRODUCTION

The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions
in computational acoustics and aeroacoustics [1]-[7]. It is a classical leapfrog algorithm, but is
combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility
of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the
ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to
treat the outer computational boundaries naturally using the exact compatibility equations. The LBS
offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes
much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-
space electromagnetic propagation and scattering problems [3], [6], [7]. This paper extends the LBS
to model lossy dielectric and magnetic materials. Results are presented for several one-dimensional
model problems, and the FDTD algorithm is chosen as a convenient reference for comparison.

II. ONE-DIMENSIONAL IMPLEMENTATION

Maxwell’s equations for linear, homogeneous and lossy media in the one-dimensional TE case
(taking @=@y = @=@z = 0) are
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where c = 1=
p
��, and the electric and magnetic conductivities are given by � and � �, respectively.

The procedure for the LBS is to transform the dependent variables D y and Hz to characteristic
variables. To transform (1) and (2) into characteristic form, we first multiply (2) by c and then add
and subtract from (1) to give
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Now define P = Dy +
1

c
Hz and Q = Dy � 1

c
Hz to represent the right and left propagating

solutions, respectively. P and Q are otherwise known as the characteristic variables. Using these
definitions, (3) and (4) can be rewritten as
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If we make the definitions a = �=�+ ��=� and b = �=�� ��=�, then (5) and (6) become
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To develop the discretized algorithm for a one-dimensional system, the stencils of Figure 1 are
proposed for the LBS. The stencil in Figure 1a is used for a right propagating wave and the stencil
in Figure 1b is used for a left propagating wave. The upwind bias nature of these stencils is thus
clearly evident. Using the stencils shown in Figure 1, the resulting finite difference equations are

�
Pn+1

i
� Pn

i

�
+

�
Pn

i�1 � Pn�1

i�1

�
2�t

+ c

�
Pn

i
� Pn

i�1

�x

�
+

a

2
Pn+1

i
+

b

2
Qn

i
= 0 (9)

�
Qn+1

i
�Qn

i

�
+

�
Qn

i+1 �Qn�1

i+1

�
2�t

� c

�
Qn

i+1 �Qn

i

�x

�
+

a

2
Pn

i
+

b

2
Qn+1

i
= 0 (10)

i+1

n

n+1

i-1 i

(a) (b)

i

n-1

Fig. 1. One-dimensional upwind leapfrog com-
putational stencils for right-going (a) and left-
going (b) characteristics.

These equations can be rewritten in the form

(1 + a�t)Pn+1

i
= Rn

1 (11)

(1 + a�t)Qn+1

i
= Rn

2 (12)

where Rn

1 and Rn

2 are the residuals given by
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and � = c�t=�x is the Courant number. The final solu-
tion is then given by
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It is clear that the a and b coefficients can be precomputed and stored before time-stepping begins.
Also, note from (15) and (16), as � !1, P n+1

i
= Qn+1

i
= 0 as required for the perfect conductor

condition.

III. FOURIER ANALYSIS

A complete Fourier analysis of the LBS has already been completed [2], therefore, only the
important results and conclusions from this analysis will be summarized. The stability condi-
tion for the LBS is � � 1 and the leading error term of the phase speed error for the LBS is
4� � (1� �) (1� 2�) =(12N2

), where N is the grid resolution in cells/�. Results are shown in Fig-
ure 2 for the normalized phase speeds at different Courant numbers (�) for the FDTD method and
the LBS. To achieve less than 1% phase speed error requires about N = 15 for the FDTD method
and about N = 6 for the LBS. Note that the LBS has zero dispersion error for � = 1 and � = 0:5.
Based upon these results, the LBS method is about 2-3 times as enonomical as the FDTD method
for the same level of accuracy.

IV. NUMERICAL RESULTS

The first problem is a free space propagation problem on a nonuniform grid with a mesh stretch
ratio of 2 that is periodic every 10 cells. The problem space size is 1000 cells periodic boundary
conditions. A characteristic based outer boundary condition similar to that in [12] was used and it
is described in [8]. For the nonuniform grid, a base cell size of 1 cm is used, the time step is 0.33
ps and the Courant number � = 1. A Gaussian pulse was allowed to propagate for 724 meters,
which leads to a time integration of 90,504 time steps. The Courant number � = 0:8, the time
step was �t = 2:67 ns and the Gaussian pulse had a FWHM pulse width of 2.26 ns. This pulse
contained significant spectral content up to 1 GHz. Figure 3 shows the error in the electric field
after n = 1000 time steps for both the FDTD method and the LBS. Note for this particular problem,
the error for the LBS is exceptionally low. From further experimentation, it was demonstrated
that the LBS provided excellent results (within 0.1% accuracy) up to a mesh stretch ratio of 3.
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Fig. 2. Percentage error in phase speed versus grid resolution for the FDTD method (left) and the LBS (right). Plot parameter
is �, the Courant number.
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Fig. 3. Percent error in electric field for a free space propagation
problem on a nonuniform grid using the FDTD method and the
LBS.

The next problem involved reflec-
tion and transmission for a lossy dielec-
tric half-space using a dielectric surface
boundary condition implementation out-
lined in [8]. A nonuniform grid was
used with the dielectric half-space for
5 � x � 10 m with material param-
eters �r2 = 4; �2 = 0:02; ��2 = 0

and �r2 = 1. This problem tests the
implementation of the dielectric surface
boundary condition which exists in the
grid at cell i = 501 which puts the x co-
ordinate for the boundary at 7.24 meters.
Electric field data was recorded at x = 5

meters (i.e. i = 346). Figure 4 shows the
reflection coefficient magnitude results.
For clarity, FDTD results were not shown in the figure, but the maximum error was near 100%. We
clearly see that the LBS is superior on a nonuniform grid, with a reflection coefficient accuracy level
within 2%. Further results for uniform and nonuniform grids and perfect conductors can be found
in [14].



V. CONCLUSIONS
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Fig. 4. Percent error in reflection coefficient magnitude versus
frequency for reflection from a lossy dielectric half-space using
FDTD and the LBS on a non-uniform grid.

This paper has extended the Linear
Bicharacteristic Scheme for computa-
tional electromagnetics to model homo-
geneous and heterogeneous lossy dielec-
tric and magnetic materials. It was
demonstrated that the LBS has several
distinct advantages over conventional
FDTD algorithms. First, the LBS is a
second-order accurate algorithm which
is about 2-3 times as economical. The
LBS can also be made to have zero dis-
persion error in certain instances. Sec-
ond, the LBS provides a more natural
and flexible way to implement surface
boundary conditions and outer radiation
boundary conditions by using character-
istics and an upwind bias technique pop-

ular in fluid dynamics. Third, the LBS provides more accurate results on nonuniform grids. The
upwind biasing provides a more flexible generalization to unstructured grids. A dielectric surface
boundary condition was implemented in a separate paper [8] and results were provided for two one-
dimensional model problems involving lossy dielectric materials and free space. The results indicate
that the LBS is a superior algorithm for treatment of dielectric materials, especially its performance
on nonuniform grids. Based upon these results, the LBS is a very promising alternative to a conven-
tional FDTD algorithm for many applications. Extensions to two and three-dimensional problems
should be straightforward.
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